0 просмотров

При какой температуре загорается резина

«РТИ Сибирь»

  • Резинотехника
  • О Компании
  • Продукция
  • ТЕХПОДДЕРЖКА
  • Контакты

Эксплуатационные свойства резин

температурный диапазонобщий диапазон работоспособности резин составляет от — 110 до 350 °С, однако конкретные марки резин обладают более узким диапазоном температуры эксплуатации.
морозостойкостьспособность резин сохранять эксплуатационные свойства при пониженной температуре. Связана с процессами стеклования (отвердевания) и кристаллизации при низких температурах. Из-за комплексного влияния низких температур на эксплуатационные свойства резины существует многочисленные методы оценки этого свойства. Предельной характеристикой м. является Тс – температура стеклования, ниже которой резина преобратает свойства твердого тела, самым нежелательным из которых для резины является хрупкость. Обычно м. оценивают по температурному пределу хрупкости Тхр, по жесткости, способности к эластичному восстановлению и др. характеристикам резины в интервале пониженных температур.
термическая стойкость (теплостойкость, температуростойкость)термическая стойкость характеризует способность резины сопротивляться термическому (тепловому) старению – т.е. сохранять эксплуатационные свойства, изменения которых обусловлено необратимыми процессами в резине при повышенных температурах. Термостойкость определяет максимальную температуру и продолжительность эксплуатации резины. Т.с. также зависит от среды и условий эксплуатации. Т.с. связана с процессами окисления и разрушением молекулярной структуры каучука. Т.с. имеет смысл только применительно к определенной физической характеристике резины: прочности, релаксации напряжения и т.п. и к среде эксплуатации. В отличие от термической стойкости – температуростойкость связана с обратимыми изменениями в структуре резины при повышенных температрах.
маслобензостойкостьхарактеризует способность резины противостоять воздействию продуктов нефтепереработки, в результате которого происходит изменение плотности резины (набухание, в т.ч. неравномерное), вымывание (растворение) из неё различных ингредиентов и как следствие – потеря важных механических свойств. Обычно маслобензостойкость присутствует в комплексе с теплостойкостью.
твердостьдля резины твердость определяется по Шору А (от 0 до 100) и заключается в измерении сопротивления резины погружению в нее индентора (тонкого подпружиненного стержня). Губки (оценочно, т.к. для них применяется характеристика плотности) имеют твердость по Шору А менее 30, мягкие резины имеют твердость по Шору А менее 50, средней твердости 50-75, твердые 76-86, очень твердые более 88, абсолютно твердое тело имеет твердость 100 ед. по Шору А.
атмосферостойкостьспособность резин выдерживать в течение длительного времени действие климатических факторов в процессе климатического старения без значительного изменения внешнего вида и технических свойств. К климатических факторам относят наличие температуру, влажность и давление воздуха, солнечное излучение, дождь, ветер, пыль, смены температуры, соляной туман, иней, содержание в воздухе коррозионных агентов и озона. А. зависит от состава резиновых смесей, условий старения и конструкции изделия. Частным случаем а. является озоностойкость резин.
водостойкость, пароводостойкостьСтойкость резин к воздействию воды (в т.ч. кипящей и перегретой) и пара. Воздействие воды на резинотехнические изделия приводит к вымыванию стабилизаторов и защитных веществ, что ускоряет последующие процессы старения. Кипящая вода и пар, помимо этого, ускоряют процессы старения и термоокисления резины. Пароводостойкость достигается подбором марки каучука, вулканизующей группы и введением в рецептуру резиновой смеси специальных компонентов. Пароводостойкость — особо важная характеристика для тонкостенных РТИ, работающих одновременно в контакте с водой и воздухом. Лучшая пароводостойскость у резин на основе ЭПК (этиленпропиленового каучука).
стойкость к воздействию вакуума (вакуумстойстойкость)способность резин сохранять свойства и работоспособность в вакууме (или при давлениях значительно ниже атмосферных). Характеризуется газовыделением и газопроницаемостью резин. Газовыделение (испарение компонетов резины) приводит к изменению свойств резины, а также к нежелательным эффектам для уплотняемого оборудования из-за конденсации продуктов испарения. Обычно срок службы уплотнений «вакуум-воздух» меньше, чем уплотнений «воздух-воздух», т.к. вакуум способствует ускорению окисления из-за более интенсивной «прокачки» воздуха через резину
газопроницаемостьсвойство резинотехничекого изделия, работающего на границе двух сред пропускать через свою поверхность определенное количество газа (пара). Характеризуется количеством газа в 1см 3 , проходящего через мембрану толщиной 1см и площадью 1см 2 , при разности давления 1атм. Г. связана с процессами растворения газа (пара) в резине на одной стороне уплотняемой среды и последующего испарения с другой стороны. Зависит от марки каучука, температуры и состава уплотняемой среды.
стойкость к взрывной декомпрессии (кессонному эффекту)Стойкость к образованию пор, трещин, вздутий, других внутренних или внешних эффектов в резиновых изделиях после быстрого (от

В реальных условиях эксплуатации резинотехнические изделия удовлетворяют не по всему приведенному выше комплексу свойств, а по заранее оговоренному в ТУ и ГОСТах набору параметров.

Эксплуатационные свойства готовых резинотехнических изделий зависят не только от состава (рецептуры) исходной резиновой смеси и способа вулканизации, но и от конструктивного исполнения этих изделий – уменьшения площади соприкосновения с агрессивными средами, усилия и способа затяжки уплотнительных изделий, отсутствия в резинотехническом изделии областей с повышенными механическими напряжениями, нанесении внешних защитных пленок и др.

Помимо специфических, резина характеризуется и общими физико-механическими свойствами: удельным весом, коэффициентом трения, теплопроводностью и другими. Многообразие условий применения резин не позволяет заранее и окончательно определить весь возможный набор предъявляемых требований, равно как и создать резину удовлетворяющей всем требованиям одновременно. В приведенной выше таблице даны лишь наиболее часто употребляемые термины, характеризующие эксплуатационные свойства резинотехнических изделий.

© ООО «РТИ Сибирь», 2009—2016

тел. 65-04-85, факс 65-04-95

Изменение свойств резины в зависимости от температуры

С изменением температуры очень сильно изменяются свойства резины, причем работоспособность деталей из нее по разным при­чинам уменьшается как при нагревании, так и при охлаждении.

Как следует из рис. 11.4, с понижением температуры резины предел прочности растет, а эластичность падает и при —80°С она становится практически равной нулю.

Отметим, что прочность резины, увеличивающаяся с пониже­нием температуры в первом приближении по линейному закону (рис. 11.4), достигает при —80°С примерно такого же значения, какое при комнатной температуре имеет совершенно лишенный эластичности вулканизат — эбонит.

Таким образом, основным неблагоприятным следствием пони­жения температуры является уменьшение эластичности резины, которая по мере охлаждения приближается по хрупкости к эбони­ту. Уже при —4 °С наиболее распространенные сорта резины не спо­собны обратимо деформироваться в необходимых пределах, и толь­ко вулканизаты на базе специальных морозостойких каучуков со­храняют требующуюся эластичность при температуре —50°С и ниже. Из чего следует, что резиновые изделия в зимнее время требуют к себе пристального внимания и осторожного обращения.

Рис. 11.4. Зависимости предела прочности на растяжение σz и относительного удлинения εz ре­зины из натурального каучука от температуры

Все работы, связанные с монтажом или демонтажем резиновых деталей в зимнее время, надо проводить, предварительно прогрев их до комнатной температуры. Особенно важно прогревать пнев­матические шины, сильно охладившиеся при длительной стоянке или продолжительной остановке автомобилей на морозе. Такое нагревание происходит само по себе в процессе движения автомо­биля за счет превращения в тепло энергии непрерывного дефор­мирования перекатывающихся шин. Однако первое время после трогания с места холодные шины имеют недостаточную эластич­ность и вследствие этого легко могут быть повреждены в результа­те больших динамических нагрузок. Поэтому сначала машина дол­жна двигаться с небольшой скоростью по наиболее ровным учас­ткам местности или дороги, избегать крутых поворотов, резкого торможения и т.д.

В высшей степени осторожное обращение при зимней эксплуа­тации автомобилей требуется с деталями, изготовленными из бензо- и маслостойкой резины. По сравнению с обычной рези­ной она обладает пониженной морозостойкостью, и поэтому уже при —20 °С изделия из нее становятся хрупкими.

С повышением температуры до ПО. 120°С относительное уд­линение резины увеличивается, а при дальнейшем нагревании, как видно из рис. 11.4, начинает уменьшаться. Переход от роста относительного удлинения к его спаду объясняется наступающим при этих температурах частичным разрывом серных мостиков между макромолекулами каучука, сопровождающимся одновременным резким снижением его эластичности и повышением пластичности.

Другие важные в эксплуатационном отношении свойства рези­ны с повышением температуры изменяются только в худшую сто­рону: прочность, износостойкость и твердость уменьшаются, а ос­таточное удлинение и способность к необратимым деформациям увеличиваются. Так, нагреванию резины с 20 до 100 °С соответству­ет двухкратное и даже трехкратное снижение предела прочности на разрыв. Еще в большей степени уменьшаются в этом случае износостойкость и твердость рези­ны. В результате при повышенной температуре пробег автомобильных шин уменьшается (рис. 11.5).

Кроме того, вследствие сильно­го понижения твердости и проч­ности резины с повышением тем­пературы увеличивается возмож­ность появления надрезов и вы­рывов целых кусков протекторов покрышек при наезде автомоби­лей на всякого рода неровности и препятствия.

Рис. 11.5. Зависимость пробега шин τпр от температуры воздуха tв

Итак, все резиновые детали и в особенности те, которые де­формируются в процессе работы, нужно в некоторых случаях зи­мой подогревать, а летом охлаждать, а также принимать меры по уменьшению их нагревания. В автомобильных шинах надо поддер­живать нормальное давление и не перегружать их. Несоблюдение этих элементарных правил эксплуатации шин ведет к чрезмерно­му тепловыделению в них со всеми вытекающими отсюда вредны­ми последствиями (рис. 11.6, 11.7).

В жару летом возможно значительное нагревание и нормально накачанных неперегруженных шин. В этом случае рекомендуется для их охлаждения периодически делать в пути остановки, а иногда, чтобы не довести до аварийного состояния покрышку вслед­ствие перегрева, — идти на снижение скорости движения, от ко­торой сильно зависит тепловой режим шин (рис. 11.8).

Рис. 11.6. Зависимость температуры воздуха в шине tШ от времени про­бега τпр:

1 — при нормальном давлении; 2 — при давлении, пониженном по срав­нению с нормой на 30 %

Рис. 11.7. Зависимость температуры деталей шины tш от времени про­бега τпр при различных нагрузках:

1 — в камере; 2 — в плечевой части шины

Рис. 11.8. Зависимость температуры деталей шины tШ от времени про­бега τпр при различных скоростях:

1 — в середине беговой дорожки; 2 — в боковой части

Предельные температуры резиновых уплотнений

Диапазон рабочих температур должен приниматься во внимание при проектировании, изготовлении и эксплуатации резиновых уплотнений. Приводимые в технической литературе и специализированных справочниках информация о предельных рабочих температурах резины основана на достаточно продолжительном сроке службы. Однако следует отметить, что некоторые жидкости разлагаются при температуре ниже максимальной предельной температуры эластомера, поэтому для уплотнительной системы необходимо учитывать температурные пределы как для самого уплотнения, так и для рабочей жидкости. При неудовлетворительной совместимости материала уплотнения с рабочей средой повышение температуры существенно снижает его надежность и долговечность в эксплуатации. Потеря герметичности при низких температурх может быть связана также с химическим воздействием жидкости, вызывающим усадку уплотнительного резинового кольца или манжеты.

Резины для высоких температур

Фторкаучуки [FPM] являются наиболее часто используемыми материалами для уплотнений, работающих при высоких температурах. Испытания уплотнительных изделий, изготовленных из этих эластомеров, демонстрируют срок службы до 700. 1000 часов при температуре воздуха около +200 градусов Цельсия. С повышением экстримальной температуры до +230 градусов Цельсия предельный срок службы уменьшается до 300 часов.

Влияние на работу уплотнения параметров окружающей (рабочей) среды должно быть обязательно учтено. В присутствии водяного пара фторкаучуки, как правило, имеют склонность к потере эластичности. В этих условиях эксплуатации рациональным решением является применение резиновых деталей на основе этилен-пропиленового каучука [EPM / EPDM].

Испытания на долговечность уплотнений из силиконовой резины [VMQ] подтверждают, что они обладают большей стойкостью к воздействию высокой температуры по сравнению с фторкаучуком, однако это справедливо для испытуемых образцов только при обеспечении необходимой циркуляции воздуха для их охлаждения.

Нитрильные резины [NBR / HNBR] обладают достаточно высокой термической и химической стойкостью в нефтепродуктах, имеют хорошие показатели износостойкости и применимы для уплотнений подвижных соединений. Некоторые модификации этих эластомеров способны выдерживать температуры до +135 градусов Цельсия при работе на воздухе, в маслах и нефтепродуктах.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector