0 просмотров

На что влияет частота шины материнской платы

Системная шина — что это?

Здравствуйте, уважаемые читатели блога Pc-information-guide.ru. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности – такое понятие, как “Системная шина”. Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных – данные, адреса – соответственно, адрес (устройств и ячеек памяти), управления – управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде многочисленных дорожек (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись “FSB”. Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как “Front-side bus” – то есть “передняя” или “системная”. И , на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе – нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между чипсетом и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись “O.C.” означает, буквально “разгон”, это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является . Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора – помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины – все это синонимы. Все разъемы материнской платы – видеокарта, жесткий диск, оперативная память “общаются” между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

На что влияет частота шины материнской платы

Михаил Тычков aka Hard

Доброго времени суток.

Если процессор – это сердце персонального компьютера, то шины – это артерии и вены по которым текут
электрические сигналы. Строго говоря, это каналы связи, применяемые для организации взаимодействия между устройствами
компьютера. Кстати, если Вы думаете, что те разъемы, куда вставляются платы расширения и есть шины, то Вы жестоко
ошибаетесь. Это интерфейсы (слоты, разъемы), с их помощью осуществляется подключение к шинам, которых, зачастую, вообще
не видно на материнских платах.

Существует три основных показателя работы шины. Это тактовая частота, разрядность и скорость передачи
данных. Начнем по порядку.

Тактовая частота

Работа любого цифрового компьютера зависит от тактовой частоты, которую определяет
кварцевый резонатор. Он представляет собой оловянный контейнер в который помещен кристалл кварца. Под воздействием
электрического напряжения в кристалле возникают колебания электрического тока. Вот эта самая частота колебания и
называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходят через
определенные интервалы, которые называются тактами. Отсюда сделаем вывод, что наименьшей единицей измерения времени для
большинства логических устройств компьютера есть такт или еще по другому – период тактовой частоты. Проще говоря – на
каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций
за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание
в секунду, соответственно 1 МГц – миллион колебаний в секунду. Теоретически, если системная шина Вашего компьютера
работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. К слову сказать,
совсем не обязательно, что бы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так
называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого либо другого
устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно
выше тактовой частоты ОЗУ.

Разрядность

Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят,
что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам
одновременно. Здесь есть одна фишка. Дело в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом
деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных
выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации.

Скорость передачи данных

Название этого параметра говорит само за себя. Он высчитывается по формуле:

тактовая частота * разрядность = скорость передачи данных

Сделаем расчет скорости передачи данных для 64 разрядной системной шины, работающей на тактовой частоте
в 100 МГц.

100 * 64 = 6400 Мбит/сек

6400 / 8 = 800 Мбайт/сек

Но полученное число не является реальным. В жизни на шины влияет куча всевозможных факторов:
неэффективная проводимость материалов, помехи, недостатки конструкции и сборки а также многое другое. По некоторым
данным, разность между теоретической скоростью передачи данных и практической может составлять до 25%.

За работой каждой шины следят специально для этого предназначенные контроллеры. Они входят в состав
набора системной логики (чипсет).

Теперь поговорим конкретно о тех шинах, которые присутствуют на материнской плате. Основной
считается системная шина FSB (Front Side Bus). По этой шине передаются данные между процессором и оперативной памятью,
а также между процессором и остальными устройствами персонального компьютера. Вот тут вот есть один подводный камень.
Дело в том, что работая над материалом этой статьи, я столкнулся с одной неразберихой – существует такая фигня, как шина
процессора. По одним данным системная шина и шина процессора это есть одно и тоже, а по другим – нет. Я перерыл кучу книг
и пересмотрел кучу схем. Вывод: поначалу процессор подключался к основной системной шине через собственную, процессорную,
шину, в современных же системах эти шины стали одним целым. Мы говорим – системная шина, а подразумеваем процессорную, мы
говорим – процессорная шина, а подразумеваем системную. Двинемся дальше. Фраза: «Моя материнская плата работает на частоте
100 МГц» означает, что именно системная шина работает на тактовой частоте в 100 МГц. Разрядность FSB равна разрядности
CPU. Если Вы используете 64 разрядный процессор, а тактовая частота системной шины 100 МГц, то скорость передачи данных
будет равна 800 Мбайт/сек.

Кроме системной шины на материнской плате есть еще шины ввода/вывода, которые отличаются друг от друга
по архитектуре. Перечислю некоторые из них:

Правила выбора – материнская плата. Что скрывается за цифрами из технических характеристик

В прошлом месяце мы открыли серию материалов «Правила выбора», посвященную основным техническим характеристикам компьютерного железа. Несмотря на общее название, каждая статья полностью самостоятельна и рассказывает не только о том, какими характеристиками обладает определенный тип железок, но и о том, на какие из них важно обращать внимание, а на какие не очень.

В прошлом выпуске мы подробно разобрались с процессорами, сегодня будем рассказывать о хитростях материнских плат.

Основы

Материнская плата — очень непростая штука. С одной стороны, это набор портов для всех наших комплектующих и периферии. Но стоит копнуть чуть глубже — и это уже запутанная сеть дорог (шин), силовых цепей и систем управления движением данных, связывающих разрозненные детали в единое целое. И хотя роль материнки в общей схеме уже не так высока, как раньше (см. врезку «Печаль оверклокера»), но именно она определяет, что же в итоге получится — простая офисная машина, отличная игровая система или мультимедийный центр. Разберемся, от чего это зависит.

Наш объект исследования делится на четыре главных части: процессорный разъем (сокет), система питания, чипсет и набор портов. Процессорный сокет — это первое, на что надо обращать внимание. Он определяет, какой камень встанет на плату. Считать контакты и изучать электрические схемы можно, но не обязательно. Достаточно посмотреть соответствующую строчку в ТТХ, написанное должно в точности совпадать с указанным на кристалле (допустим, Socket LGA1155), промахнетесь — пощады не ждите, компьютер не запустится.

А вот переживать за систему питания — цепочки транзистор/дроссель/конденсатор — вообще не стоит. Каждый такой набор называется фазой, и для всех процессоров их набирают не менее шести штук. Несмотря на то, что от них зависит правильность и стабильность питания, как правило, любая, даже самая дешевая материнка именитого производителя соответствует всем нормам и стандартам. А значит, может обеспечить штатный режим работы любого камня. За дорогими элементами с мощной системой охлаждения рекомендуем гнаться, только если вы будете собирать нереального монстра с прицелом на разгон. В остальных случаях лучше потратить деньги на что-то более полезное — к примеру, на продвинутый чипсет (набор логики).

Это управляющая микросхема, в обиходе называемая «мостом». Раньше у всех плат было два таких чипа: южный и северный. Первый отвечал за работу процессора, оперативной памяти и видеокарт. Второй — за количество доступных портов типа PS/2, SATA, USB, PCI. Сегодня все чуть упростилось. Intel южный мост выкинула и взвалила его функции на кристалл (uncore). AMD все еще использует этот чип, но отдувается он только за GPU.

С чипсетами Intel связаны и некоторые чисто функциональные нюансы. Часть ее наборов логики не поддерживает встроенное в процессор видеоядро (не работает без видеокарты) или разгон через разблокированный множитель. К сожалению, по маркировке об этом не догадаешься, поэтому придется мучить Google запросами типа «название чипсета specs». У AMD в этом смысле попроще. Каких-то особенных бонусов к своим платам она не прилагает, а стоимость логики определяется лишь количеством линий PCIe: чем старше модель, тем их больше.

Порты

Определившись с процессором и возможностями, перейдем к самому интересному — планированию ПК, а именно к обстоятельному выбору портов, которые понадобятся в будущем. Многие на этот аспект не обращают внимания и берут первое, что попадается, а зря — в дальнейшем это сулит кучу неприятностей.

Для начала надо не проморгать количество поддерживаемой оперативной памяти. От нее будет зависеть общая отзывчивость системы, а также некоторые игры (например, Battlefield 3). Главная засада в том, что бюджетные платы часто принимают всего две планки памяти или не могут работать с объемом свыше 16 ГБ — это мало. Отмечайте для себя и максимально возможную частоту DDR3. Пусть она практически не сказывается на производительности, но будет обидно, если у вас появятся быстрые планки, а раскрыть их потенциал не получится.

Еще один момент — расположение портов. Следите, чтобы они находились на почтительном расстоянии от сокета, иначе при установке особо большого процессорного кулера часть слотов перекроется. Если есть какие-то сомнения, не стесняйтесь просить в магазине кулер на примерку, ничего страшного в этом нет.

Следующий пункт — графические разъемы под видеокарты. Обозначаются они как PCIe x16 или x8. Цифры в названии указывают на количество линий, подведенных к порту, и теоретически должны влиять на производительность свежекупленного GeForce. На самом же деле что шестнадцать, что восемь каналов — количество fps остается тем же. Знать про это надо, чтобы не напрягаться при покупке платы с несколькими графическими разъемами. Так как количество линий жестко лимитировано возможностями процессора (Intel) или южного моста (AMD), производители зачастую соединяют разъемы по схеме x16+x8 или x8+x8. Это нормально, а вот отсутствие поддержки таких технологий, как NVIDIA SLI или AMD CrossFireX, — уже плохо.

Они могут сильно облегчить жизнь, когда Crysis 3 не пойдет с максимальными настройками на вашей GTX 660 Ti. В этом случае во второй PCIe x16 можно будет поставить еще одну GTX 660 Ti и объединить усилия видеокарт. Думать о том, что вы никогда не решитесь заниматься такой акробатикой и чураться материнок с несколькими PCIe x16, — плохая затея. Во-первых, еще один GTX 660 Ti окажется заметно дешевле топовой GTX 680. Во-вторых, не придется искать, куда пристроить старую видеокарту: разные GPU в тандеме не уживаются. В-третьих, «лишний» PCIe x16 может приютить любое другое устройство с интерфейсом PCIe, поскольку эти же линии используются для работы практически всех звуковых/Wi-Fi/ТВ-плат.

Как правило, под них устанавливают короткие PCIe x1 или PCIe x4. И если вы предполагаете напичкать свой ПК дополнительными картами, то следите, чтобы соответствующих портов было побольше. Плюс к этому учитывайте, как они установлены. Слот располагается сразу под видеокартой — его перекроет система охлаждения GPU. Внимательными надо быть и коллекционерам старых железок с интерфейсом PCI. Intel от его поддержки отказалась, и его наличие зависит только от производителя.

Зато о чем можно забыть, так это о версии PCIe. Сейчас производители продвигают третье, более быстрое поколение шины, однако оно никак не влияет на производительность и обратно совместимо с предыдущим PCIe 2.0.

Ну и, наконец, последний важный пункт — SATA под жесткие диски и USB для периферии. Тут нас должны волновать количество и версии этих разъемов. В моде сейчас SATA Rev. 3 и USB 3.0. Они обратно совместимы с предыдущими стандартами, однако скорость передачи отличается в несколько раз, поэтому экономить на этом не надо. Копирование файла в 15 ГБ по USB 2.0 занимает около 10-11 минут, с USB 3.0 на это уходит 3-4 минуты (при условии, что свежий разъем поддерживается еще и накопителем).

Что же касается количества, то, как показывает практика, в большинстве случаев хватает пяти-шести SATA и шести-восьми USB. С последними, правда, надо быть настороже. Читая ТТХ, держите в уме, что производители, да и многие журналы, грешат записью максимального числа портов. К примеру, 14 или 16 штук. К сожалению, это только возможности чипсета (реализуются через внешние карты расширения или лицевую панель корпуса), нас же интересуют выходы на задней панели. Именно в них мы будем втыкать наши мышки/клавиатуры, принтеры, флэшки. Идти на компромисс, надеясь потом подключить USB-хаб и добавить контактов, не желательно: скорость разделится между новыми выходами и флэшки будут читаться очень медленно.

Вообще, надо сказать, за панелью ввода/вывода нужен глаз да глаз. Место на ней жестко ограничено, и получить всего и побольше нереально, надо от чего-то отказываться.

Важные мелочи

В игровых системах жертвенный список возглавляют всякие DVI, D-sub (VGA), HDMI и DisplayPort. При наличии дискретной видеокарты они только съедают драгоценное место. За ними стоят eSATA; если у вас дома не завалялось соответствующего накопителя, забудьте об этом разъеме: USB 3.0 использовать гораздо удобнее, да и найти его на чужом компьютере проще.

А вот что касается FireWire (IEEE), то о нем стоит задуматься. В принципе, встречается он не то чтобы часто, но может пригодиться, если в вас проснется любовь к искусству, — интерфейс идеален для работы с музыкой и видео. В остальном следите только за тем, чтобы был LAN и, возможно, PS/2, если у вас старая клавиатура (мыши, думаем, у всех уже USB).

За звук волноваться не стоит. Встроенным аудиокодеком сегодня оснащаются все материнки. Как правило, это чип от Realtek либо Creative/ASUS. Последний предпочтительнее, но специально гнаться за ним нет смысла, понадобится хороший звук — купите отдельную плату. Лучше присматривайте за тем, сколько аудиовыходов размещено на задней панели. Часто в бюджетных материнках ограничиваются парой портов — под фронтальные колонки и микрофон, — а значит, многоканальную акустику к ним не подключишь.

Ну и последнее, о чем всегда надо помнить, — размеры материнской платы. Стандартные корпуса (Middle Tower) рассчитаны на ATX (305х244 мм), micro-ATX (244х244 мм) и mini-ITX (170х170 мм). Эти формфакторы берите смело, всякие XL-ATX или CEB покупайте только при уверенности, что они поместятся в ваш «ящик».

Как видите, ничего хитрого в материнских платах нет. Самых главных правил выбора всего два: определиться с сокетом и трезво оценить, что вам понадобится в будущем. Сильно не экономьте — всегда есть вероятность, что захочется поставить звуковую плату или вторую видеокарту. Но в то же время не спешите закупать самые дорогие решения: за каждый лишний порт придется платить двойную цену. Это же касается мощных систем охлаждения. По большей части, сегодня они нужны только тем, кто собирается заняться разгоном, в остальных случаях — это просто приятный бонус.

Печаль оверклокера

Если бы эта статья писалась лет пять назад, вряд ли мы уложились в четыре страницы. Как минимум еще столько же пришлось посвятить его величеству разгону. Смешно сейчас вспоминать, но тогда это была очень актуальная тема. Купив процессор за 3000 рублей, с помощью нехитрых манипуляций он превращался в модель за 5000 рублей. Делалось это очень просто.

Рабочая частота кристалла получается путем перемножения скорости шины на множитель процессора (200 МГц х 15). Подняв один из этих показателей, реально получить прирост производительности. В те времена множители, как правило, блокировались, а вот шина оставалась свободной для экспериментов. Благодаря тому, что всеми действиями управлял южный мост, творить позволялось все, что душе угодно. К примеру, увеличив частоту шины со стандартных 133 до 150 МГц, можно было добиться от камня прибавки в 500 МГц, что при штатных 1,8 ГГц было весьма чувствительно.

К сожалению, в последних поколениях камней этот путь заблокировали. К частоте системной шины привязали скорость практически всех компьютерных портов, изначально неспособных к разгону (вроде PCIe). Это привело к тому, что старый метод перестал работать, а тем, кто не мыслит себя без оверклокинга, предложили доплачивать за кристаллы с разблокированным множителем. В такой ситуации производителям материнок осталось упирать только на качественное питание, охлаждение и необычные методы разгона, к примеру, по Bluetooth.

Сколько мы себя помним, нас постоянно спрашивают, что же такое BIOS, за что он отвечает и нужно ли его обновлять. Сейчас обо всем расскажем.

BIOS — это базовая операционка, управляющая компьютером до запуска Windows. На старте она объясняет всем устройствам, что от них требуется и по каким параметрам надо работать. Через интерфейс управления можно вмешаться в эти алгоритмы и попытаться увеличить производительность железа. Проблема в том, что без должных знаний этого лучше не делать. И хотя сейчас сложно что-то испортить — неверные действия пресекают программы проверки — переступить грань и лишиться гарантии все же реально.

Что же касается обновления, то тут такая ситуация. По идее, родной BIOS должен идеально подходить материнской плате. Однако производители все же предлагают время от времени обновлять прошивку, чтобы исправить мелкие ошибки. С одной стороны, дело это хорошее, с другой — мы бы им заниматься не рекомендовали. Дополнительных fps в играх не получите, а вот случайно загубить плату, обнулив гарантию, вполне реально.

Прошивать BIOS стоит только в случае, если система работает нестабильно, выдает ошибки при загрузке, ну или программисты добавили поддержку необходимых вам новых процессоров. Впрочем, если потребность возникла, бояться не надо. Перезаписать управляющую программу можно прямо в Windows (соответствующее ПО есть у каждого уважающего себя производителя) или из-под BIOS при помощи утилиты, встроенной в материнскую плату. Со старыми моделями последний пункт может вызвать трудности (придется изучить сайт производителя), а вот с новым UEFI все окажется проще и нагляднее. Вместо унылых желтых надписей на синем фоне вас будет ожидать анимированное меню с поддержкой мышки и высоких разрешений.

Отметим, что UEFI — это не просто смена имиджа, а новая операционка, вытеснившая BIOS. Основных преимуществ у нее два. Первое: возможность использовать все ресурсы ПК (даже интернет) еще до загрузки ОС. Второе: интегрированная поддержка новых стандартов железа — например, объемных накопителей емкостью больше 2 ТБ. Интересно, что, хотя UEFI появился всего несколько лет назад, впервые о нем заговорили еще в 1998 году, с подачи Intel.

Ссылка на основную публикацию
Статьи c упоминанием слов: