Как найти пропускную способность шины
Содержание
- 1 Как найти пропускную способность шины
- 1.1 Вы спрашивали: Как рассчитать пропускную способность шины процессора?
- 1.2 Как посчитать пропускную способность процессора?
- 1.3 Как рассчитать пропускную способность оперативной памяти?
- 1.4 Какая шина обладает самой высокой тактовой частотой?
- 1.5 Что такое пропускная способность простыми словами?
- 1.6 Как определить пропускную способность шины?
- 1.7 Как узнать пропускную способность оперативной памяти AIDA64?
- 1.8 Что обеспечивает стандарт шины?
- 1.9 Какие шины данных вы знаете?
- 1.10 Как работает шина данных?
- 1.11 Как определить пропускную способность?
- 1.12 Что понимается под пропускной способностью порта?
- 1.13 Шина — королева джунглей. Просто и ясно о шинах и памяти
- 1.14 Пропускная способность шины
- 1.15 Как найти пропускную способность шины
- 1.16 Компьютерная Энциклопедия
- 1.17 Системные платы
- 1.18 Шина процессора
- 1.19 Общие сведения о шине процессора
- 1.20 Вы спрашивали: Как рассчитать пропускную способность шины процессора?
- 1.21 Как посчитать пропускную способность процессора?
- 1.22 Как рассчитать пропускную способность оперативной памяти?
- 1.23 Какая шина обладает самой высокой тактовой частотой?
- 1.24 Что такое пропускная способность простыми словами?
- 1.25 Как определить пропускную способность шины?
- 1.26 Как узнать пропускную способность оперативной памяти AIDA64?
- 1.27 Что обеспечивает стандарт шины?
- 1.28 Какие шины данных вы знаете?
- 1.29 Как работает шина данных?
- 1.30 Как определить пропускную способность?
- 1.31 Что понимается под пропускной способностью порта?
Вы спрашивали: Как рассчитать пропускную способность шины процессора?
Для определения пропускной способности шины необходимо умножить тактовую частоту шины на ее разрядность. Например, для 16-разрядной шины ISA пропускная способность определяется так: (16 бит — 8,33 МГц) : 8 = (133,28 Мбит/с) : 8 = 16,66 Мбайт/с.
Как посчитать пропускную способность процессора?
Теоретическую максимальную пропускную способность памяти для Intel Core процессоров серии X можно рассчитать путем умножения тактовой частоты памяти (в два раза больше, чем у двух скоростей передачи данных x 2),умноженной на число 16 bytesширины и умноженной на количество каналов, поддерживаемых процессором.
Как рассчитать пропускную способность оперативной памяти?
Чтобы выяснить пропускную способность, нужно посмотреть маркировку модуля. Например, чипу DDR4-3200 соответствует модуль PC4-25600 (таблица). 25600 — это пропускная способность данной ОЗУ. Чем она выше, тем быстрее работает вся сборка.
Какая шина обладает самой высокой тактовой частотой?
Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является шина процессора с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина.
Что такое пропускная способность простыми словами?
По сути, пропускная способность — это способность передавать данные, другими словами, это понятие определяет, как много данных может быть перенесено из одной точку в другую за определённый период времени.
Как определить пропускную способность шины?
Пропускная способность измеряется в мегабайтах в секунду (Мбайт/с) или в мегабитах в секунду (Мбит/с). Здесь важно не путать эти два значения, поскольку скорость в мегабайтах в восемь раз больше скорости в мегабитах (1 байт = 8 бит). Существует два типа шин: последовательные и параллельные.
Как узнать пропускную способность оперативной памяти AIDA64?
Алгоритм, по которому выполняется проверка оперативной памяти в AIDA64, следующий:
- Запуск AIDA64.
- Выбор пункта «Системная плата».
- Переход в раздел «Память». Здесь можно получить информацию о размере ОЗУ, проценте ее занятости.
- Переход в раздел «SPD». Здесь можно узнать частоту оперативной памяти.
Что обеспечивает стандарт шины?
Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Отличительной особенностью шины SCSI является то, что она представляет собой кабельный шлейф.
Какие шины данных вы знаете?
Основные шины компьютера
- Шина ISA.
- Шина MCA.
- Шина EISA.
- Шина VESA.
- Шина PCI.
- Шина AGP.
- PCI-Express.
- PC Card.
Как работает шина данных?
Шина данных предназначена для пересылки кодов обрабатываемых данных, а также машинных кодов команд между устройствами ЭВМ. По шине данных передается информация в микропроцессор и из него. Шина адреса несет адрес (номер) той ячейки памяти или того порта ввода-вывода, который взаимодействует с микропроцессором.
Как определить пропускную способность?
д.; в оптике — безразмерной величиной. В информатике определение пропускной способности обычно применяется к каналу связи и определяется максимальным количеством переданной или полученной информации за единицу времени. Пропускная способность — один из важнейших с точки зрения пользователей факторов.
Что понимается под пропускной способностью порта?
Под пропускной способностью понимается максимальное количество тонн груза, которое порт может в соответствии со своими производственными возможностями погрузить на суда и выгрузить с судов за определенный период.
Шина — королева джунглей. Просто и ясно о шинах и памяти
Теория и практика
Термин “пропускная способность” определяет количество данных, передаваемых шиной за единицу времени. Пропускная способность измеряется в мегабайтах в секунду (Мбайт/с) или в мегабитах в секунду (Мбит/с). Здесь важно не путать эти два значения, поскольку скорость в мегабайтах в восемь раз больше скорости в мегабитах (1 байт = 8 бит).
Существует два типа шин: последовательные и параллельные. Для наглядности представим кусочки информации в виде автомобилей, а шину — дорогой. Последовательная шина — это узкое шоссе в две полосы. По первой полосе машины движутся в одном направлении, по второй — в обратном. Параллельная шина — это многополосное шоссе, где по каждой полосе движутся автомобили.
Современные параллельные шины очень широкие — число полос в них может достигать 64 или даже 128! Правда, прокладывать 128 полос в одном направлении, а затем в другом — очень накладно. Поэтому параллельные шины часто используют одни и те же полосы для передачи данных в обоих направлениях. Скажем, в первую секунду шина работает в одном направлении, во вторую — в обратном. Стоит отметить, что не все полосы передают данные. Многие шины используют часть полос для передачи “служебной информации” — адреса, управления шиной и так далее.
Скорость работы последовательных шин принято выражать в мегабитах в секунду, а параллельных — в мегабайтах в секунду.
Если в жизни мы всю свою работу сверяем по часам, то в компьютере для этой цели используются тактовые импульсы. Компьютер — это целый мир, где все комплектующие живут тактами. Легче всего представить импульсы в виде звонков в школе: между двумя звонками проходит один урок. За это время все ученики должны выполнить определенную работу. Так и в компьютере. За период одного такта (промежутка между импульсами) процессор должен выполнить задачу и выдать ответ. За такт шина передает данные с одного конца на другой. И так по кругу.
Количество тактов за единицу времени называется частотой — она измеряется в герцах. Скажем, частота процессора 1 ГГц соответствует одному миллиарду тактов в секунду. Чтобы процессор работал быстрее, можно поднять тактовую частоту. За счет этого уменьшатся промежутки между тактовыми импульсами. Но увеличивать тактовую частоту можно лишь до какого-то предела. Рано или поздно процессор перестанет успевать выполнять работу в отведенный срок, и компьютер даст сбой.
Memento
Теоретическая пиковая пропускная способность, которую производители железа любят указывать везде, где только можно, на самом деле не соответствует реальным показателям. На практике на производительность любой шины влияет множество факторов, и самый значимый — задержка доступа.
Инженеры придумали множество способов для повышения эффективности работы шины. Один из самых популярных подходов заключается в использовании пакетного режима. В этом случае задержки чтения будут максимальными только для первой порции данных, а все остальные следуют с минимальными задержками.
Другое решение для повышения эффективности работы шины — банальное увеличение ее пропускной способности. Это достигается с помощью повышения частоты шины, увеличения ее ширины, а также перехода на технологию DDR.
Но, как бы хороши ни были эти способы, добиться от шины идеальной пропускной способности практически невозможно. Так что при выборе памяти всегда помните, что важно учитывать не только ее теоретическую пиковую пропускную способность, но также ее задержки и частоту.
Пропускная способность шины
Тема: Устройства ПК.
Учебныевопросы:
1. Устройства, составляющие архитектуру ПК.
2. Внутренние устройства ПК.
3. Внешние устройства ПК.
1.
Современные ЭВМ весьма разнообразны как по своему устройству, так и по исполняемым функциям.
Если рассматривать ЭВМ по их функциональности, можно условно классифицировать их:
1. «Бытовые» ЭВМ (ПК);
2. «Учебные» ЭВМ (упрощенной архитектуры);
3. «Профессиональные» ЭВМ (рабочие станции на производстве, в офисе и др.);
4. ЭВМ-серверы (управление рабочими станциями, объединенными в сети, хранение больших массивов информации и т.д.) и др.
В зависимости от выполняемых функций и, благодаря открытой архитектуре устройство ЭВМ весьма разнообразно. В результате научно-технического развития архитектура ЭВМ постоянно усовершенствуется (эволюционирует).
Открытая архитектура современных ПК:
Интерфейсная система |
Архитектура ЭВМ – это наиболее общие принципы построения, реализующие программное управление взаимодействием её основных узлов. Архитектура ЭВМ – это, прежде всего блоки и устройства, а также структура связей между ними.
Блоки и устройства, составляющие архитектуру ПК, кроме того разделяют на две группы:
· внутренние устройства;
· внешние (периферийные) устройства.
2.
Внутренние устройства, вероятно, получили такое обобщающее название, так как объединены в одном корпусе, называемом системным блокомПК.
Внешний вид и размеры корпусов системных блоков разнообразны. Однако обязательным для всех корпусов элементом являются разъёмы для подключения внешних устройств и интерфейс управления.
При огромном разнообразии вариантов, составляемых из устройств, систем, помещенных в корпус системного блока, обязательно наличие минимальной их комплектации.
К «обязательным» относятся:
· Блок питания. В среднем мощность их составляет 100 – 400 Вт. Чем больше устройств в системе, тем большую мощность должен иметь блок питания. (Средняя мощность 200 – 300 Вт).
· Системная (материнская) плата. Это многофункциональное устройство является центральным для ЭВМ с открытой архитектурой. По физическому строению она представляет собой очень сложно организованную многослойную печатную плату.
С точки зрения функциональности системная плата выполняет комплекс функций по интеграции устройств и обеспечению их взаимодействия.
По мере того, как элементы конфигурации архитектуры ЭВМ стандартизируется, реализуется тенденция включения их в состав материнской платы.
Первая материнская плата была разработана фирмой IBM в августе 1981 года (PC-1). С самого начала материнская плата задумывалась как компонент, обеспечивающий механическое соединение и электрическую связь между всеми прочими аппаратными средствами. Кроме этих функций, она также осуществляет подачу электроэнергии (питание) на компоненты компьютера.
Архитектура современной системной платы (обобщенная).
Современная МП содержит большое количество контроллеров (специализированных микропроцессоров) обеспечивающих взаимодействие всех устройств. Они реализованы в двух наборах микросхем, исторически получивших название «северный мост» и «южный мост» или чипсетов.
· Контроллер-концентратор памяти, или «северный мост» (англ. North Bridge) обеспечивает работу процессора, оперативной памяти и видеоподсистемы;
· Контроллер-концентратор ввода-вывода, или «Южный мост» (англ. South Bridge) обеспечивает работу с внешними устройствами.
Пропускная способность шины.
Быстродействие процессора, оперативной памяти и периферийных устройств существенно различаются.
Быстродействие устройства зависит от:
· тактовой частоты обработки данных (обычно измеряется в мегагерцах – МГц);
· и разрядности, т.е. количества битов данных, обрабатываемых за один такт (промежуток времени между подачей электрических импульсов, синхронизирующих работу устройств ПК).
Соответственно скорость передачи данных – пропускная способность соединяющих эти устройства шин также должна различаться. Пропускная способность шины равна разрядности шины (биты) умноженной на частоту шины (Гц – герцы. 1Гц = 1 такт в секунду).
Системная шина (FSB от англ. Front Side Bus) осуществляет передачу данных между «Северным мостом» и микропроцессором. В современных ПК системная шина имеет разрядность 64 бита и частоту 400 МГц – 1600 МГц.
Пропускная способность может достигать 12,5 Гбайт/с.
Шина памяти осуществляет передачу данных между «Северным мостом» и оперативной памятью ПК. Имеет те же показатели, что и системная шина.
Шина PCI Express (Peripherial Component Interconnect Bus Express – ускоренная шина взаимодействия периферийных устройств) осуществляет передачу данных между «Северным мостом» и видеоплатой (видеокартой). Пропускная способность этой шины может достигать 32 Гбайт/с.
Шина SATA (англ. Serial Advanced Technology Attachment – последовательная шина подключения накопителей) осуществляет передачу данных между «Южным мостом» и устройством внешней памяти (жесткие диски, CD и DVD дисководы, дискеты). Пропускная способность может достигать 300 Мбайт/с.
Шина USB (англ. Universal Serial Bus – универсальная последовательная шина) осуществляет передачу данных между «Южным мостом» и разнообразными внешними устройствами (сканерами, цифровыми камерами и др.). Пропускная способность до 60 Мбайт/с. Обеспечивает подключение к ПК одновременно до 127 периферийных устройств.
Другие важные функции системной платы – обеспечение механического соединения и электрической связи между всеми прочими аппаратными средствами, а также подачи на них питания.
Существует большое разнообразие конструктивных решений системных плат.
Одной из характеристик системной платы является форм-фактор (AT/ATX). Она определяет размеры системной платы и расположений на ней компонентов аппаратных средств.
Упрощенная схема размещения компонентов СП.
Центральным блоком ПК считается расположенный в специальном разъёме системной платы электронный блок получивший название процессорили микропроцессор.
Первоначально микропроцессор объединил на одном кристалле кремния СБИС арифметико-логического устройства (АЛУ) и устройства управления (УУ).
Выполняемые микропроцессором команды предусматривают обычно арифметические действия, логические операции, передачу управления и перемещение данных между регистрами, оперативной памятью и портами ввода-вывода. С внешними устройствами микропроцессор сообщается благодаря своим шинам адреса, данных и управления, выведенным на специальные контакты корпуса микросхемы.
Устройство управления вырабатывает управляющие сигналы, поступающие по шинам инструкций во все блоки ЭВМ.
Упрощенная схема УУ
Регистр команд – запоминающий регистр, в котором хранится код команды: код выполняемой операции и адреса операндов, участвующих в операции.
Постоянное запоминающее устройство микропрограмм – хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК операций обработки информации. Дешифратор операций, считывая код операции из регистратора команд, выбирает в ПЗУ микропрограмм необходимую последовательность управляющих сигналов – код команды.
Узел формирования адреса – устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд.
Кодовые шины данных, адреса и инструкций – части внутренней шины микропроцессора, осуществляющие передачу сигналов между процессором и другими устройствами ПК.
В общем случае УУ формирует управляющие сигналы для выполнения следующих основных процедур:
· выборки из регистра – счетчика адреса ячейки ОЗУ, где хранится очередная команда программы;
· выборки из ячеек ОЗУ, когда очередной команды и приёма считанной команды в регистр команд;
· расшифровки кода операции и признаков выбранной команды;
· считывания из соответствующих расшифрованному коду операций ячеек ПЗУ микропрограмм управляющих сигналов (импульсов), определяющих во всех блоках ЭВМ процедуры выполнения заданной операции, и пересылки управляющих сигналов в эти блоки;
· считывания из регистра команд и регистром МПП (микропроцессорной памяти) отдельных составляющих адресов операндов;
· выборки операндов и выполнения заданной операции их обработки;
· записи результатов в памяти;
· формирование адреса следующей команды программы.
Арифметико-логическое устройство предназначено для выполнения арифметических и логических операций преобразования информации.
Как найти пропускную способность шины
Компьютерная Энциклопедия
Архитектура ЭВМ
Компоненты ПК
Интерфейсы
Мини блог
Самое читаемое
Системные платы
Шина процессора
Общие сведения о шине процессора
Шина процессора — соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.
На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится шина процессора, далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.
В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.
Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus — FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.
Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.
В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP. Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.
В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.
Шина процессора на основе hub-архитектуры
Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS, называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB. В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).
В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность — 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).
Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является шина процессора с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.
Процессор Athlon 64, независимо от типа гнезда (Socket 754, Socket 939 или Socket 940), использует высокоскоростную архитектуру HyperTransport для взаимодействия с северным мостом или микросхемой AGP Graphics Tunnel. Первые наборы микросхем для процессоров Athlon 64 использовали версию шины HyperTransport с параметрами 16 бит/800 МГц, однако последующие модели, предназначенные для поддержки процессоров Athlon 64 и Athlon 64 FX в исполнении Socket 939, используют более быструю версию шины HyperTransport с параметрами 16 бит/1 ГГц.
Наиболее заметным отличием архитектуры Athlon 64 от всех остальных архитектур ПК является размещение контроллера памяти не в микросхеме северного моста (или микросхеме MCH/GMCH), а в самом процессоре. Процессоры Athlon 64/FX/Opteron оснащены встроенным контроллером памяти. Благодаря этому исключаются многие “узкие места”, связанные с внешним контроллером памяти, что положительно сказывается на общем быстродействии системы. Главный недостаток этого подхода состоит в том, что для добавления поддержки новых технологий, например памяти DDR2, придется изменять архитектуру процессора.
Поскольку шина процессора должна обмениваться информацией с процессором с максимально возможной скоростью, в компьютере она функционирует намного быстрее любой другой шины. Сигнальные линии (линии электрической связи), представляющие шину, предназначены для передачи данных, адресов и сигналов управления между отдельными компонентами компьютера. Большинство процессоров Pentium имеют 64-разрядную шину данных, поэтому за один цикл по шине процессора передается 64 бит данных (8 байт).
Тактовая частота , используемая для передачи данных по шине процессора, соответствует его внешней частоте. Это следует учитывать, поскольку в большинстве процессоров внутренняя тактовая частота, определяющая скорость работы внутренних блоков, может превышать внешнюю. Например, процессор AMD Athlon 64 3800+ работает с внутренней тактовой частотой 2,4 ГГц, однако внешняя частота составляет всего 400 МГц, в то время как процессор Pentium 4 с внутренней частотой 3,4 ГГц имеет внешнюю частоту, равную 800 МГц. В новых системах реальная частота процессора зависит от множителя шины процессора (2x, 2,5x, 3x и выше). Шина FSB, подключенная к процессору, по каждой линии данных может передавать один бит данных в течение одного или двух периодов тактовой частоты. Таким образом, в компьютерах с современными процессорами за один такт передается 64 бит.
Пропускная способность шины процессора
Для определения скорости передачи данных по шине процессора необходимо умножить разрядность шины данных (64 бит, или 8 байт, для Celeron/Pentium III/4 или Athlon/Duron/ Athlon XP/Athlon 64) на тактовую частоту шины (она равна базовой (внешней) тактовой частоте процессора).
Например, при использовании процессора Pentium 4 с тактовой частотой 3,6 ГГц, установленного на системной плате, частота которой равна 800 МГц, максимальная мгновенная скорость передачи данных будет достигать примерно 6400 Мбайт/с. Этот результат можно получить, используя следующую формулу:
800 МГц × 8 байт (64 бит) = 6400 Мбайт/с.
Для более медленной системы Pentium 4:
533,33 МГц × 8 байт (64 бит) = 4266 Мбайт/с;
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с.
Для системы Athlon XP (Socket A) получится следующее:
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с;
333 МГц × 8 байт (64 бит) = 2667 Мбайт/с;
266,66 МГц × 8 байт (64 бит) = 2133 Мбайт/с.
Для системы Pentium III (Socket 370):
133,33 МГц × 8 байт (64 бит) = 1066 Мбайт/с;
100 МГц × 8 байт (64 бит) = 800 Мбайт/с.
Максимальную скорость передачи данных называют также пропускной способностью шины (bandwidth) процессора.
Вы спрашивали: Как рассчитать пропускную способность шины процессора?
Для определения пропускной способности шины необходимо умножить тактовую частоту шины на ее разрядность. Например, для 16-разрядной шины ISA пропускная способность определяется так: (16 бит — 8,33 МГц) : 8 = (133,28 Мбит/с) : 8 = 16,66 Мбайт/с.
Как посчитать пропускную способность процессора?
Теоретическую максимальную пропускную способность памяти для Intel Core процессоров серии X можно рассчитать путем умножения тактовой частоты памяти (в два раза больше, чем у двух скоростей передачи данных x 2),умноженной на число 16 bytesширины и умноженной на количество каналов, поддерживаемых процессором.
Как рассчитать пропускную способность оперативной памяти?
Чтобы выяснить пропускную способность, нужно посмотреть маркировку модуля. Например, чипу DDR4-3200 соответствует модуль PC4-25600 (таблица). 25600 — это пропускная способность данной ОЗУ. Чем она выше, тем быстрее работает вся сборка.
Какая шина обладает самой высокой тактовой частотой?
Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является шина процессора с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина.
Что такое пропускная способность простыми словами?
По сути, пропускная способность — это способность передавать данные, другими словами, это понятие определяет, как много данных может быть перенесено из одной точку в другую за определённый период времени.
Как определить пропускную способность шины?
Пропускная способность измеряется в мегабайтах в секунду (Мбайт/с) или в мегабитах в секунду (Мбит/с). Здесь важно не путать эти два значения, поскольку скорость в мегабайтах в восемь раз больше скорости в мегабитах (1 байт = 8 бит). Существует два типа шин: последовательные и параллельные.
Как узнать пропускную способность оперативной памяти AIDA64?
Алгоритм, по которому выполняется проверка оперативной памяти в AIDA64, следующий:
- Запуск AIDA64.
- Выбор пункта «Системная плата».
- Переход в раздел «Память». Здесь можно получить информацию о размере ОЗУ, проценте ее занятости.
- Переход в раздел «SPD». Здесь можно узнать частоту оперативной памяти.
Что обеспечивает стандарт шины?
Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Отличительной особенностью шины SCSI является то, что она представляет собой кабельный шлейф.
Какие шины данных вы знаете?
Как работает шина данных?
Шина данных предназначена для пересылки кодов обрабатываемых данных, а также машинных кодов команд между устройствами ЭВМ. По шине данных передается информация в микропроцессор и из него. Шина адреса несет адрес (номер) той ячейки памяти или того порта ввода-вывода, который взаимодействует с микропроцессором.
Как определить пропускную способность?
д.; в оптике — безразмерной величиной. В информатике определение пропускной способности обычно применяется к каналу связи и определяется максимальным количеством переданной или полученной информации за единицу времени. Пропускная способность — один из важнейших с точки зрения пользователей факторов.
Что понимается под пропускной способностью порта?
Под пропускной способностью понимается максимальное количество тонн груза, которое порт может в соответствии со своими производственными возможностями погрузить на суда и выгрузить с судов за определенный период.